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We introduce a Langevin equation characterized by a time-dependent drift. By assuming a temporal power-
law dependence of the drift, we show that a great variety of behavior is observed in the dynamics of the
variance of the process. In particular, diffusive, subdiffusive, superdiffusive, and stretched exponentially dif-
fusive processes are described by this model for specific values of the two control parameters. The model is
also investigated in the presence of an external harmonic potential. We prove that the relaxation to the
stationary solution has a power-law behavior in time with an exponent controlled by one of the model
parameters.

PACS numbsd(s): 02.50.Ey, 05.40.Jc, 05.70.Ln

Diffusive stochastic processes, i.e. stochastic processedgith v<<1. Similar behaviors are observed in glassy systems
x(t) characterized by a linear growth in time of the varianceand in random walks in ultrametric spadés.
(x?(t))=t, are quite common in physical systems. However, The modeling of some of the above discussed anomalous
deviations from a diffusive process are observed in severdliffusing stochastic processes has been done by using a va-
stochastic systems. Superdiffusivéxi(t))oct” with v>1) riety of_ approaches. To pite some examples, we recall that
and subdiffusive (x?(t))ct” with v<<1) random processes Superdiffusive and subdiffusive processes have been mod-
have been detected and investigated in physical and compléted by writing down a generalized diffusion equation
systems. A classical example of superdiffusive random prok1,10,11, by introducing Ley walk models|12], by using a
cess is Richardson’s observation that two particles moving iffactional Fokker-Planck equation approddf], and by us-
a turbulent fluid which at timeé=0 are originally placed N9 :_:1d hocstochastic models such as the fractional Brownian
very close to each other have a relative separdtartimet ~ motion[14]. o _
that follows the relation(12(t))=t® [1]. More recent ex- In this Rapid Communication we introduce a class of
amples include anomalous kinetics in chaotic dynamics dubangevin equations capable of describing all the different
to flights and trapping2,3], anomalous diffusion in aggre- anomglous regimes discussed at_)ove for Gaussian processes.
gates of amphiphilic moleculdd], and anomalous diffusion Specifically, we study the properties of the class of Langevin
in a two-dimensional rotating flos]. Subdiffusive stochas- €duations
tic processes have also been detected and investigated. Ex- )
amples includes charge transport in amorphous semiconduc- X+ y(tH)x=TI'(t), (0]
tors [6,7] and the dynamics of a bead in polymd&].
Another class of stochastic processes which are not diffusivethere y(t) is a function of timet andI'(t) is a Langevin
in a simple way is the one characterized by a variance with &rce with zero mean and with a correlation function given
stretched exponential time dependence. When a such procesg (I'(t,)I'(t;))=DJ(t,—t;). Equation (1) describes an
is Gaussian distributed the probability of return to the originOrnstein-Uhlenbeck proceg45] in the particular case of
Pq(t) is described by the Kohlrausch laRg(t) < exq —t”] v(t)=y. This equation is linear and solvable. For the sake of
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simplicity we set the boundary condition of Ed. att=0. We calculate the two-time conditional probability density
The formal solution of Eq(1) is P(X,t5|X;,t;) as the Green function of the Fokker-Planck
equation. In our formalisny <t,. Our determination is made
tI'(s) by working with the Fourier transform oP(X,,t,|Xq,t)
X(t)=X(0)G(t)+G(t)fO@dS, (2)  with respect to thex variable. The equation for the Fourier

transform of P(x,,t,|X4,t;) is a first-order partial differen-
tial equation, which can be solved by using characteristic

whereG(t)=exd — [, (s)ds]. By using this formal solution curves. We obtain

and all order correlation functions &f(t) we obtain all cen-

tral moments ofx(t). The first two central moments are 1
given by P(Xz,ta]x1,t1) = N
2541
(X(1))=x(0)G(t)=p(t), _ 2
3 Xexp( b n;(tbtl)xl] . (D
) ) t 1 ) 2s°(ty,t1)
(O=wOP =D [ =0 where  m(t; t)=ex{~ [yl and Stz )

) . =D [ exf —2/2(y)dy]ldz Hence the transition probabilit
The general relation between higher-order even central mo- f‘l r[ /2 y(y). vl . . P y
ments and the second central moment of the investigate®f EG- (7) is @ Gaussian transition probability. Moreover, Eq.

processes is the one observed in a Gaussian process. Moté! Satisfies the Chapman-Kolmogorov equation. In fact from
over, odd central moments are zero, hence we conclude th@t diréct integration one can verify tha(xs,ts[xy,t1)

the stochastic processes described by (Egis Gaussian. :flrl?(t)r(ﬁa tf(';é% 'é]%)ti.(é(%{azl)%’&)) ?nxé nication we restrict our
We now consider the two-time correlation functions of . IS Rapl nmunication w Ict ou
o T attention to the class of Langevin equations with a drift term
the procesx(t) and of its time derivativex(t). In the fol-  that has temporal behavior of the form

lowing we label the two time$; andt, of the correlation 5
functions in such a way that,>t;. By using the formal y(t)~alt (8)

solutl_on of Eq.(2) we dete_rmme the two-time correlation for large time values. We study the stochastic process of Eq.
function for the random variable(t) (1) for different values of parameteesand 8. Specifically,
Gt we focus on the asymptotic temporal evolution of the vari-
(X(t)x(ty))= m(ty) u(ty) + (_2)02(»[1)_ (4) ance and of the two-time corrglation fupction xfft). We_
G(ty) recall that fora=0, Eq.(1) describes a Wiener process with
) . ) a variance increasing in a diffusive way?(t)~t, and a
In ge_neral, the correlation funct|ot|x(tl)x(t2_)) s not a delta-correlatedx(t). When B=0, Eq. (1) describes an
function oft,—t; and therefore the process is usually NoN-ghtein-Uhlenbeck process and one of two regimes is ob-
stationary. , , served depending on the signafWhena>0 the stochastic
By starting from the correlation function eft) and from  5rocess has a stationary Gaussian solution, whereas avhen
the formal solution of the Langevin equation, we obtain the g there is no stationary state and the variance increases

two-time correlation function ok(t) as asymptotically in an exponential waye(t)~exp(2alt)
o [15,16. The two-time correlation of the velocity decreases in
(X(t)X(t2)) = py (t) my (L) +D S(ta—ty) an exponential way as eiplal(t;—ty)].
The cases considered above are known. In addition to
+ () G(t)F(ty), ) these cases, we observe a large variety of new behaviors

I . controlled by the specific values of parametarand 8. By
whgre '_“U(t.):_y(t)'“(t) indicates the mean of the time o qtivating the 8,a) set of parameters, we detect different
derivative x(t) and F(t;)=[y(t;)o*(t;)~D]/G(t1). The  anomalous behavior that we discuss below systematically by
two-time correlation function ok(t) is the sum of a delta considering different regions of the parameter.

function and a smooth function. (i) Region with>1. The procesx(t) is diffusive and
The Fokker-Planck equation associated with the Langeviits variance increases linearly with time for any valueaof
equation given in Eq(1) is The two-time correlation function of(t) can be obtained
starting from Eq.5). A direct calculation gives
% 2 ytep)+ 2 28 © s
= o W OXp)T 5 —. . . a —aty
at  ox 2 ox? 2 2

This Fokker-Planck equation is the same as the Smolu- )

chowski equation of a Brownian particle moving in a har- The proces(t) can be positively or negatively correlated
monic oscillator with a time-dependent potentigl(x)  depending on the sign @ Whena>0 (a<0) the correla-
«x2y(t). In our study we consider both positive and nega-tion is negative(positive. This property is valid for any
tive values ofy(t). For positive values of/(t) the position value of 3. By investigating the explicit form of Eq9) one

x=0 is a stable equilibrium position, whereas in the oppositedbserves that the correlation function decreases as a function

casex=0 is an unstable equilibrium position. of t, with a power-law dependencéx(t;)x(t,))~1/t5.
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TABLE I. Summary of the different diffusion regimes. The con- aD a
stantC=2[al/(1-B). (X(t)X(ty))~— —Bex;{ - m(téﬁ—tiﬁ)) .
t2
B a a?(t) Description (14
a=0 t Wiener (diffusive . . .
A ( ) If the time interval 7==t,—t; is shorter thant; [19] the
B>1 a>0 t diffusive power-law term dominates in this equation and the stochastic
B>1 a<o0 t diffusive process is power-law anticorrelated. For>t; the two-
— time correlation function decreases exponentially.
p=1 a>-1/2 t diffusive Whena<0 the variance increases as a stretched exponen-
B=1 a=-1/2 tInt log divergent tial
B=1 a<—1/2 t2lal superdiffusive
0<pB<1 a>0 tP subdiffusive ) 2|al 1
~ 1 ¢1-8
0<p<1 a<o0 exgCt:#] less than oo () ~ex 1_Bt : (15
exponentially diffusive
=0 a>0 1—exp(-2at)  Ornstein-Uhlenbeck Since the process is Gaussian, the probability of return to the
=0 a<o0 exp(Jalt) exponentially diffusive  origin follows the Kohlrausch lawp(x(0),t)=1/y2ma(t)
" : ~exd —t*"#]. This kind of anomalous diffusion has been
B<0 a>0 1n# localized observed in glasses and in random walks on an ultrametric

B<0 a<o0 exgCtt~#] more than

) o space[9]. The two-time correlation function ok(t) in-
exponentially diffusive

creases with time as Eql4).
(iv) RegionB<0. This region is essentially different from
(i) Region with B=1. In this case we observe two re- the previous ones because the absolute value of the drift term
gimes. Whera> — 1/2 the variance increases in a diffusive increases in time and eventually diverges. In this case we
way: o%(t) ~t. We find a different behavior whea< —1/2.  also observe two regimes depending on the siga. &hen
In fact, by using Eq(3) one can show that a<0 the time evolution of the variance is formally the same
201y~ g2lal 10 as Eq.(15) of case(iii). In this region of 8 parameter the
o (t) : (10 variance increases more than exponentially in time. When
Therefore, the particle performs a Gaussian superdiffusiv@>0 we find that the variance decreases with time with a
random process. At the boundary valae —1/2 the vari- power-law dependence?(t)~1/t/l. By using the Smolu-
ance increases in a log-divergent way &&t)~tInt. The  chowski picture, we can interpret this behavior as the motion
two-time correlation function ok(t) is determined starting ©f @ Brownian particle moving in a time-dependent potential,

from Eq. (5). An explicit calculation gives which leads to a localization of the particle in the point
a =0. For both regimes the two-time correlation function of
(X(t)X(tp))~ = F(ty). (11 x(t) is given by Eq.(9).
t5 We summarize the above-discussed variety of diffusive

. _ o behavior ofa?(t) in Table I.
The two-time correlation function of(t) shows a power-law

time dependence and th€t) process is a strongly depen- 10°
dent random proced4.7]. We wish to point out that when
a=—1 the diffusion of thex(t) process is ballistic. This 10°
specific case has already been investigated by E. Nelson in
the framework of stochastic mechanics. The Ito equation de- 10
scribing the stochastic process associated with the free evo- =
lution of a Gaussian quantum wave packeft18§] < 0°
—-C
dX(t):mX dt+dw(t), (12 10°
0

wherew(t) is a Wiener process andis a constant. This L T -
stochastic equation describes the same random process of t (arb. units)
Eq. (1) for large values of.

(i) In the region 6<B<1 we observe two regimes, FIG. 1. Theoretical estimation of the normalized difference of
which depend on the sign &f. Whena>0 the variance the variance at time from the stationary valuerZ,, A(t) as a
increases as function of time. Different curves refer to different values of the

control parametera and 8. Thea values area=1 (solid lineg and
o?(t)~tP. (13 a=—1 (dashed lings The paramete3 assumes the values 0.2,

. o . . .0.6, 1.0, 1.4, and 1.8 from top to bottom. In the inset we show a
This behavior is the customary behavior observed in subdifgpica) time evolution ofr?(t) obtained by settingg=0.6 and two

fusive random process. The two-time correlation function ofgitferent values of, a=1 (bottom curvé anda=—1 (top curve.
x(t) behaves asymptotically as The other parameters are=1, kKM =1, andD=1
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The results obtained above referdd) random processes the different relaxation dynamics, we evaluate numerically
which are not stationary. We now consider the problem of ghe integral in Eq(18) by settingy(t) =a/(7#+t#). In Fig.
processx(t) whose dynamics is controlled by a modified 1 we show in a log-log plot the quantita(t)=|o?(t)
version of Eq.(1) in which the effects of the presence of an —aﬁ,]/aﬁt as a function of time. The quantity(t) provides a
“external” time-independent potential are taken into ac- measure of the distance of the system from the stationary
count. To this end we consider the specific case of an oveehavior. In Fig. 1 we show that the quantityt) decreases
damped particle of madd moving in a viscous medium in following the power-law behavioA (t)=1/# for large val-
the presence of a potential having a time dependence of thées oft and for all the investigated values of the parameters
kind described by Eq(8) and a time-independent part. The a and 8. In particular, whera>0, zrz(t)—<r§t goes to zero

equation of motion of such a system is as a negative value, whereas wherni0 the same quantity
] _ goes to zero taking positive values. In order to illustrate this
M px+g(t)x—F(x)=MTI(1), (16)  result we show?(t) as a function of time wheg=0.6 and

- a=*1 inthe inset of Fig. 1. For € 8<1 (therefore includ-
where 7 is the friction constant and'(t) is the Langevin ing subdiffusive, superdiffusive, and stretched exponentially
force with diffusion constant 2kgT/M. This equation is diffusing processest is not possible to define a characteris-

formally equivalent to tic time scale for the convergence of(t) during the pro-
. ) cess of relaxation. This is due to the fact that the integral of
X+ y(O)x+V'(x)=T(1), 17 JEA(/A(ty)dt=2. Although a power-law behavior is stil

when V'(X)=—F(x)/M75, y(t)=g(t)/M», and D observed whermB>1, it is worth pointing out that in this

— 2kgT/M #. The prime inV(x) indicates spatial derivative. Interval of 8 a typical time scale might be determined by
It is worth pointing out that wheny(t) goes to zero as considering the above-discussed integral which is finite in
increasesas, for example, in the casg(t)~a/t? with g this region ofg. _ , _

>0), Eq.(17) might have a stationary solution. The presence N conclusion, the Langevin equatio) and (17) with

of a stationary solution depends on the exact shapé(s}. the choice of Eq(8) describe non-stationary and stationary

To investigate in a concrete example the relaxation dyf@ndom processes showing a wide class(mbrmal and

namics of the probability density function aft) towards anomalousdiffusion. When a stationary state exists, the re-
the stationary solution, we study E.7) in the presence of Iaxatlon dynamics to the stationary state has a power-law
an external harmonic potential(x) = $kx?. In this case the time dependence._ The Processes modeled by Elqsan.d
process has a stationary state. A general solution of Ef). (17) are characterized by a t|me-'dependent drift tgrm in the
is found by using the substitutiop(t) — y(t) +k/M % in Eq. associated Fokker-Planck equation. Our model is comple-

2). In this case the variance of the process is equal to mentary to Batchel_or’s d_escription of ano_malqus diffusion
@ P a obtained by assuming a time-dependent diffusion tgr6j.

t@2ks/M7 Equationg1) and(17) can be used to model metastable sys-
az(t)zDe*ZKt’M”Gz(t)f —ds. (18)  tems in which one of the physical observables, such as the
0 G*(s) viscosity, is time dependent. They can also be used to de-

velop simple and efficient algorithms generating realizations

; ; o 2
The asymptotic stationary value of(t) is og=DM »/2k of random processes with controlled anomalous diffusion.

=kgT/k, which is independent of the parameterand 8.
However, we observe a relaxation dynamics whose func- The authors thank INFM and MURST for financial sup-
tional form is controlled by the values afand 8. To detect port. F.L. acknowledges FSE-INFM for financial support.
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