
RAPID COMMUNICATIONS

PHYSICAL REVIEW E
STATISTICAL PHYSICS, PLASMAS, FLUIDS,

AND RELATED INTERDISCIPLINARY TOPICS

THIRD SERIES, VOLUME 61, NUMBER 5 PART A MAY 2000

submitted
l letter
ompanied
Drift-controlled anomalous diffusion: A solvable Gaussian model

Fabrizio Lillo and Rosario N. Mantegna
Istituto Nazionale per la Fisica della Materia, Unita` di Palermo and Dipartimento di Fisica e Tecnologie Relative,
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We introduce a Langevin equation characterized by a time-dependent drift. By assuming a temporal power-
law dependence of the drift, we show that a great variety of behavior is observed in the dynamics of the
variance of the process. In particular, diffusive, subdiffusive, superdiffusive, and stretched exponentially dif-
fusive processes are described by this model for specific values of the two control parameters. The model is
also investigated in the presence of an external harmonic potential. We prove that the relaxation to the
stationary solution has a power-law behavior in time with an exponent controlled by one of the model
parameters.
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Diffusive stochastic processes, i.e. stochastic proce
x(t) characterized by a linear growth in time of the varian
^x2(t)&}t, are quite common in physical systems. Howev
deviations from a diffusive process are observed in sev
stochastic systems. Superdiffusive (^x2(t)&}tn with n.1)
and subdiffusive (̂x2(t)&}tn with n,1) random processe
have been detected and investigated in physical and com
systems. A classical example of superdiffusive random p
cess is Richardson’s observation that two particles movin
a turbulent fluid which at timet50 are originally placed
very close to each other have a relative separationl at timet
that follows the relation̂ l 2(t)&}t3 @1#. More recent ex-
amples include anomalous kinetics in chaotic dynamics
to flights and trapping@2,3#, anomalous diffusion in aggre
gates of amphiphilic molecules@4#, and anomalous diffusion
in a two-dimensional rotating flow@5#. Subdiffusive stochas
tic processes have also been detected and investigated
amples includes charge transport in amorphous semicon
tors @6,7# and the dynamics of a bead in polymers@8#.
Another class of stochastic processes which are not diffu
in a simple way is the one characterized by a variance wi
stretched exponential time dependence. When a such pro
is Gaussian distributed the probability of return to the orig
P0(t) is described by the Kohlrausch lawP0(t)} exp@2tn#
PRE 611063-651X/2000/61~5!/4675~4!/$15.00
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with n,1. Similar behaviors are observed in glassy syste
and in random walks in ultrametric spaces@9#.

The modeling of some of the above discussed anoma
diffusing stochastic processes has been done by using a
riety of approaches. To cite some examples, we recall
superdiffusive and subdiffusive processes have been m
eled by writing down a generalized diffusion equatio
@1,10,11#, by introducing Le´vy walk models@12#, by using a
fractional Fokker-Planck equation approach@13#, and by us-
ing ad hocstochastic models such as the fractional Brown
motion @14#.

In this Rapid Communication we introduce a class
Langevin equations capable of describing all the differ
anomalous regimes discussed above for Gaussian proce
Specifically, we study the properties of the class of Lange
equations

ẋ1g~ t !x5G~ t !, ~1!

whereg(t) is a function of timet and G(t) is a Langevin
force with zero mean and with a correlation function giv
by ^G(t2)G(t1)&5Dd(t22t1). Equation ~1! describes an
Ornstein-Uhlenbeck process@15# in the particular case o
g(t)5g. This equation is linear and solvable. For the sake
R4675 ©2000 The American Physical Society
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simplicity we set the boundary condition of Eq.~1! at t50.
The formal solution of Eq.~1! is

x~ t !5x~0!G~ t !1G~ t !E
0

t G~s!

G~s!
ds, ~2!

whereG(t)[exp@2*0
t g(s)ds#. By using this formal solution

and all order correlation functions ofG(t) we obtain all cen-
tral moments ofx(t). The first two central moments ar
given by

^x~ t !&5x~0!G~ t ![m~ t !,
~3!

^@x~ t !2m~ t !#2&5DG2~ t !E
0

t 1

G2~s!
ds[s2~ t !.

The general relation between higher-order even central
ments and the second central moment of the investig
processes is the one observed in a Gaussian process. M
over, odd central moments are zero, hence we conclude
the stochastic processes described by Eq.~1! is Gaussian.

We now consider the two-time correlation functions
the processx(t) and of its time derivativeẋ(t). In the fol-
lowing we label the two timest1 and t2 of the correlation
functions in such a way thatt2>t1. By using the formal
solution of Eq.~2! we determine the two-time correlatio
function for the random variablex(t)

^x~ t1!x~ t2!&5m~ t1!m~ t2!1
G~ t2!

G~ t1!
s2~ t1!. ~4!

In general, the correlation function̂x(t1)x(t2)& is not a
function of t22t1 and therefore the process is usually no
stationary.

By starting from the correlation function ofx(t) and from
the formal solution of the Langevin equation, we obtain t
two-time correlation function ofẋ(t) as

^ẋ~ t1!ẋ~ t2!&5mv~ t1!mv~ t2!1Dd~ t22t1!

1g~ t2!G~ t2!F~ t1!, ~5!

where mv(t)52g(t)m(t) indicates the mean of the tim
derivative ẋ(t) and F(t1)[@g(t1)s2(t1)2D#/G(t1). The
two-time correlation function ofẋ(t) is the sum of a delta
function and a smooth function.

The Fokker-Planck equation associated with the Lange
equation given in Eq.~1! is

]r

]t
5

]

]x
~g~ t !xr!1

D

2

]2r

]x2
. ~6!

This Fokker-Planck equation is the same as the Sm
chowski equation of a Brownian particle moving in a ha
monic oscillator with a time-dependent potentialU(x)
}x2g(t). In our study we consider both positive and neg
tive values ofg(t). For positive values ofg(t) the position
x50 is a stable equilibrium position, whereas in the oppos
casex50 is an unstable equilibrium position.
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We calculate the two-time conditional probability dens
P(x2 ,t2ux1 ,t1) as the Green function of the Fokker-Plan
equation. In our formalismt1<t2. Our determination is made
by working with the Fourier transform ofP(x2 ,t2ux1 ,t1)
with respect to thex variable. The equation for the Fourie
transform ofP(x2 ,t2ux1 ,t1) is a first-order partial differen-
tial equation, which can be solved by using characteris
curves. We obtain

P~x2 ,t2ux1 ,t1!5
1

A2ps2~ t2 ,t1!

3expS 2
@x22m~ t2 ,t1!x1#2

2s2~ t2 ,t1!
D , ~7!

where m(t2 ,t1)5exp@2*t1

t2g(y)dy#, and s2(t2 ,t1)

5D* t1

t2 exp@22*z
t2g(y)dy#dz. Hence the transition probability

of Eq. ~7! is a Gaussian transition probability. Moreover, E
~7! satisfies the Chapman-Kolmogorov equation. In fact fro
a direct integration one can verify thatP(x3 ,t3ux1 ,t1)
5*P(x3 ,t3ux2 ,t2)P(x2 ,t2ux1 ,t1)dx2.

In the rest of this Rapid Communication we restrict o
attention to the class of Langevin equations with a drift te
that has temporal behavior of the form

g~ t !;a/tb ~8!

for large time values. We study the stochastic process of
~1! for different values of parametersa andb. Specifically,
we focus on the asymptotic temporal evolution of the va
ance and of the two-time correlation function ofẋ(t). We
recall that fora50, Eq.~1! describes a Wiener process wi
a variance increasing in a diffusive way,s2(t);t, and a
delta-correlatedẋ(t). When b50, Eq. ~1! describes an
Ornstein-Uhlenbeck process and one of two regimes is
served depending on the sign ofa. Whena.0 the stochastic
process has a stationary Gaussian solution, whereas wha
,0 there is no stationary state and the variance increa
asymptotically in an exponential way:s(t);exp(2uaut)
@15,16#. The two-time correlation of the velocity decreases
an exponential way as exp@2uau(t22t1)#.

The cases considered above are known. In addition
these cases, we observe a large variety of new behav
controlled by the specific values of parametersa andb. By
investigating the (b,a) set of parameters, we detect differe
anomalous behavior that we discuss below systematically
considering different regions of theb parameter.

~i! Region withb.1. The processx(t) is diffusive and
its variance increases linearly with time for any value ofa.
The two-time correlation function ofẋ(t) can be obtained
starting from Eq.~5!. A direct calculation gives

^ẋ~ t1!ẋ~ t2!&;
a

t2
b

expS 2at2
12b

12b DF~ t1!. ~9!

The processẋ(t) can be positively or negatively correlate
depending on the sign ofa. Whena.0 (a,0) the correla-
tion is negative~positive!. This property is valid for any
value ofb. By investigating the explicit form of Eq.~9! one
observes that the correlation function decreases as a fun
of t2 with a power-law dependence:^ẋ(t1) ẋ(t2)&;1/t2

b .
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~ii ! Region withb51. In this case we observe two re
gimes. Whena.21/2 the variance increases in a diffusiv
way: s2(t);t. We find a different behavior whena,21/2.
In fact, by using Eq.~3! one can show that

s2~ t !;t2uau. ~10!

Therefore, the particle performs a Gaussian superdiffus
random process. At the boundary valuea521/2 the vari-
ance increases in a log-divergent way ass2(t);t lnt. The
two-time correlation function ofẋ(t) is determined starting
from Eq. ~5!. An explicit calculation gives

^ẋ~ t1!ẋ~ t2!&;
a

t2
11a

F~ t1!. ~11!

The two-time correlation function ofẋ(t) shows a power-law
time dependence and theẋ(t) process is a strongly depen
dent random process@17#. We wish to point out that when
a521 the diffusion of thex(t) process is ballistic. This
specific case has already been investigated by E. Nelso
the framework of stochastic mechanics. The Ito equation
scribing the stochastic process associated with the free
lution of a Gaussian quantum wave packet is@18#

dx~ t !5
t2c

t21c2
x dt1dw~ t !, ~12!

where w(t) is a Wiener process andc is a constant. This
stochastic equation describes the same random proce
Eq. ~1! for large values oft.

~iii ! In the region 0,b,1 we observe two regimes
which depend on the sign ofa. When a.0 the variance
increases as

s2~ t !;tb. ~13!

This behavior is the customary behavior observed in sub
fusive random process. The two-time correlation function
ẋ(t) behaves asymptotically as

TABLE I. Summary of the different diffusion regimes. The co
stantC[2uau/(12b).

b a s2(t) Description

b a50 t Wiener ~diffusive!

b.1 a.0 t diffusive
b.1 a,0 t diffusive

b51 a.21/2 t diffusive
b51 a521/2 t lnt log divergent
b51 a,21/2 t2uau superdiffusive

0,b,1 a.0 tb subdiffusive
0,b,1 a,0 exp@Ct12b# less than

exponentially diffusive

b50 a.0 12exp(22at) Ornstein-Uhlenbeck
b50 a,0 exp(2uaut) exponentially diffusive

b,0 a.0 1/t ubu localized
b,0 a,0 exp@Ct12b# more than

exponentially diffusive
e

in
e-
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^ ẋ~ t1!ẋ~ t2!&;2
aD

t2
b

expS 2
a

12b
~ t2

12b2t1
12b! D .

~14!

If the time interval t[t22t1 is shorter thant1 @19# the
power-law term dominates in this equation and the stocha
process is power-law anticorrelated. Fort..t1 the two-
time correlation function decreases exponentially.

Whena,0 the variance increases as a stretched expon
tial

s2~ t !;expF 2uau
12b

t12bG . ~15!

Since the process is Gaussian, the probability of return to
origin follows the Kohlrausch law,r„x(0),t…51/A2ps(t)
;exp@2t12b#. This kind of anomalous diffusion has bee
observed in glasses and in random walks on an ultrame
space @9#. The two-time correlation function ofẋ(t) in-
creases with time as Eq.~14!.

~iv! Regionb,0. This region is essentially different from
the previous ones because the absolute value of the drift
increases in time and eventually diverges. In this case
also observe two regimes depending on the sign ofa. When
a,0 the time evolution of the variance is formally the sam
as Eq.~15! of case~iii !. In this region ofb parameter the
variance increases more than exponentially in time. Wh
a.0 we find that the variance decreases with time with
power-law dependences2(t);1/t ubu. By using the Smolu-
chowski picture, we can interpret this behavior as the mot
of a Brownian particle moving in a time-dependent potent
which leads to a localization of the particle in the pointx
50. For both regimes the two-time correlation function
ẋ(t) is given by Eq.~9!.

We summarize the above-discussed variety of diffus
behavior ofs2(t) in Table I.

FIG. 1. Theoretical estimation of the normalized difference
the variance at timet from the stationary valuesst

2 , D(t) as a
function of time. Different curves refer to different values of th
control parametersa andb. Thea values area51 ~solid lines! and
a521 ~dashed lines!. The parameterb assumes the values 0.2
0.6, 1.0, 1.4, and 1.8 from top to bottom. In the inset we show
typical time evolution ofs2(t) obtained by settingb50.6 and two
different values ofa, a51 ~bottom curve! anda521 ~top curve!.
The other parameters aret51, k/Mh51, andD51
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The results obtained above refer tox(t) random processe
which are not stationary. We now consider the problem o
processx(t) whose dynamics is controlled by a modifie
version of Eq.~1! in which the effects of the presence of a
‘‘external’’ time-independent potential are taken into a
count. To this end we consider the specific case of an o
damped particle of massM moving in a viscous medium in
the presence of a potential having a time dependence o
kind described by Eq.~8! and a time-independent part. Th
equation of motion of such a system is

Mh ẋ1g~ t !x2F~x!5M G̃~ t !, ~16!

where h is the friction constant andG̃(t) is the Langevin
force with diffusion constant 2hkBT/M . This equation is
formally equivalent to

ẋ1g~ t !x1V8~x!5G~ t !, ~17!

when V8(x)52F(x)/Mh, g(t)5g(t)/Mh, and D
52kBT/Mh. The prime inV(x) indicates spatial derivative
It is worth pointing out that wheng(t) goes to zero ast
increases~as, for example, in the caseg(t);a/tb with b
.0), Eq.~17! might have a stationary solution. The presen
of a stationary solution depends on the exact shape ofV(x).

To investigate in a concrete example the relaxation
namics of the probability density function ofx(t) towards
the stationary solution, we study Eq.~17! in the presence o
an external harmonic potential,V(x)5 1

2 kx2. In this case the
process has a stationary state. A general solution of Eq.~17!
is found by using the substitutiong(t)→g(t)1k/Mh in Eq.
~2!. In this case the variance of the process is equal to

s2~ t !5De22kt/MhG2~ t !E
0

te2ks/Mh

G2~s!
ds. ~18!

The asymptotic stationary value ofs2(t) is sst
2 [DMh/2k

5kBT/k, which is independent of the parametersa and b.
However, we observe a relaxation dynamics whose fu
tional form is controlled by the values ofa andb. To detect
ys

ev
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the different relaxation dynamics, we evaluate numerica
the integral in Eq.~18! by settingg(t)5a/(tb1tb). In Fig.
1 we show in a log-log plot the quantityD(t)[us2(t)
2sst

2u/sst
2 as a function of time. The quantityD(t) provides a

measure of the distance of the system from the station
behavior. In Fig. 1 we show that the quantityD(t) decreases
following the power-law behaviorD(t)}1/tb for large val-
ues oft and for all the investigated values of the paramet
a andb. In particular, whena.0, s2(t)2sst

2 goes to zero
as a negative value, whereas whena,0 the same quantity
goes to zero taking positive values. In order to illustrate t
result we shows2(t) as a function of time whenb50.6 and
a561 in the inset of Fig. 1. For 0,b<1 ~therefore includ-
ing subdiffusive, superdiffusive, and stretched exponentia
diffusing processes! it is not possible to define a characteri
tic time scale for the convergence ofs2(t) during the pro-
cess of relaxation. This is due to the fact that the integra
* t1

` D(t)/D(t1)dt5`. Although a power-law behavior is stil

observed whenb.1, it is worth pointing out that in this
interval of b a typical time scale might be determined b
considering the above-discussed integral which is finite
this region ofb.

In conclusion, the Langevin equations~1! and ~17! with
the choice of Eq.~8! describe non-stationary and stationa
random processes showing a wide class of~normal and
anomalous! diffusion. When a stationary state exists, the
laxation dynamics to the stationary state has a power-
time dependence. The processes modeled by Eqs.~1! and
~17! are characterized by a time-dependent drift term in
associated Fokker-Planck equation. Our model is com
mentary to Batchelor’s description of anomalous diffusi
obtained by assuming a time-dependent diffusion term@10#.
Equations~1! and~17! can be used to model metastable sy
tems in which one of the physical observables, such as
viscosity, is time dependent. They can also be used to
velop simple and efficient algorithms generating realizatio
of random processes with controlled anomalous diffusion
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